Exercise 12

Use the definition of continuity and the properties of limits to show that the function is continuous at the given number a.

$$
g(t)=\frac{t^{2}+5 t}{2 t+1}, \quad a=2
$$

Solution

By definition, a function is continuous at a number a if

$$
\lim _{t \rightarrow a} g(t)=g(a) .
$$

Evaluate the function at $t=2$.

$$
f(2)=\frac{(2)^{2}+5(2)}{2(2)+1}=\frac{4+10}{4+1}=\frac{14}{5}
$$

Calculate the limit as t approaches 2 using the limit laws.

$$
\begin{aligned}
\lim _{t \rightarrow 2} g(t) & =\lim _{t \rightarrow 2} \frac{t^{2}+5 t}{2 t+1} \\
& =\frac{\lim _{t \rightarrow 2}\left(t^{2}+5 t\right)}{\lim _{t \rightarrow 2}(2 t+1)} \\
& =\frac{\lim _{t \rightarrow 2} t^{2}+\lim _{t \rightarrow 2} 5 t}{\lim _{t \rightarrow 2} 2 t+\lim _{t \rightarrow 2} 1} \\
& =\frac{\left(\lim _{t \rightarrow 2} t\right)\left(\lim _{t \rightarrow 2} t\right)+5\left(\lim _{t \rightarrow 2} t\right)}{2\left(\lim _{t \rightarrow 2} t\right)+1} \\
& =\frac{(2)(2)+5(2)}{2(2)+1} \\
& =\frac{14}{5}
\end{aligned}
$$

The condition in the definition is satisfied, so $g(t)=\frac{t^{2}+5 t}{2 t+1}$ is a continuous function at $a=2$.

